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Abstract. The Friedel sum rule is generalized to relativistic systems of spin-1/2 particles in one dimension.
The change of the total energy due to the presence of an impurity is studied. The relation of the sum rule
with the relativistic Levinson theorem is presented. Density oscillations in such systems are discussed. Since
the Friedel theorem has been of major importance in understanding the impurity scattering in materials,
the present results may be useful to explain some phenomena in one dimensional atomic chain, quantum
wire, and fermionic many body systems.

PACS. 34.10.+x General theories and models of atomic and molecular collisions and interactions (including
statistical theories, transition state, stochastic and trajectory models, etc.) – 11.80.Et Partial-wave analysis
– 31.10.+z Theory of electronic structure, electronic transitions, and chemical binding – 73.21.Hb Quantum
wires

1 Introduction

The Friedel sum rule (FSR) [1–3] is an important theorem
in studying effects of an impurity on the electron structure
in solids, which sets up the relation between the change
of the number of states ∆N around the impurity and the
phase shift at Fermi surface. In three dimensional (3D)
systems, the theorem can be described by

∆N =
2
π

∞∑

l=0

(2l + 1)δl(Ef ), (1)

where δl(Ef ) denotes the phase shift of scattered state in
the angular-momentum channel l with energy at the Fermi
surface. The result is one of the most interesting results
in the theory of impurity. It states that the change of the
number of states caused by the potential of the impurity
can be quantified in terms of the scattering phase shift at
Fermi surface. The subject was then studied by many au-
thors and generalized to include the internal degree of free-
dom of particles [4,5], which provides a powerful method
in calculating the residual resistance, diamagnetic suscep-
tibility [2,3], spectral properties of spin-1/2 fermions in
the presence of an impurity [6,7], and so forth. Recently,
based on the Dirac equation, the FSR for relativistic spin-
1/2 particles in 3D systems is proved to be

∆N =
1
π

∞∑

κ=−∞,κ �=0

2 |κ|
{[

δκ(Ef ) − δκ(µ) + δκ(−E′
f )

−δκ(−µ)] + εκ
π(−1)|κ|

2
[
sin2 δκ(µ) − sin2 δκ(−µ)

] }
,

(2)
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where δκ(±Eλ) and δκ(±µ), classified by the angular mo-
mentum κ = ±(j+1/2) and εκ ≡ 1(−1) for κ > 0 (κ < 0),
are the phase shifts of scattering states at Fermi energies
(Eλ = Ef and −E′

f ) and zero-momentum (Eλ = ±µ) [8].
The result may provide a basis for exploring the effect of
an impurity by the FSR for 3D relativistic systems.

Over the past twenty years, remarkable phenomena
have been observed in 1D nanostructures such as the
quantized conductance [9,10], reduced temperature de-
pendence of threshold current in quantum wires [11], end
states in 1D atom chains [12], and so forth. On the other
hand, from the viewpoint of applications many nanostruc-
tures have been designed to take advantage of the spin
degree of freedom in 1D electron gas (1DEG) [13–17].
A deeper understanding of the effect of impurities on
fermions of spin-1/2 in 1D systems [18] is clearly impor-
tant for the development of 1D spin-dependent nanostruc-
tures. Furthermore, since the relativistic spectra appear
naturally as a low energy effective spectra for massless
electrons in 1D metals [19], it is beneficial to establish the
FSR for 1D relativistic spin-1/2 systems. In one dimen-
sion, the non-relativistic FSR can be proved to be (see
Appendix)

∆N =
2
π

∑

p=e,o

[
δp(Ef ) − δp(0) + εp

π

2
sin2 δp(0)

]
, (3)

where δp(0) is the phase shift at zero-momentum, and the
phase shifts δp(Eλ) (p = e, o) are classified by even parity
(e) and odd parity (o) of wave functions. In this paper
we will study the FSR for relativistic spin-1/2 particles in
one dimension. From which the change in energy due to
the presence of an impurity, and the relation between the
FSR and the Levinson theorem [20–22] are discussed.
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This paper is organized as follows. In Section 2, the
1D FRS is generalized to the relativistic spin-1/2 particles
moving in a symmetric potential |V (x)| when |x| ≤ a and
V (x) = 0 when |x| ≥ a. The total change of the number of
states ∆N around the potential is shown to relate to the
phase shifts δp(Eλ) of scattering states at Fermi energies
(Eλ = Ef and −E′

f ) and zero-momentum (Eλ = ±µ) as
follows:

∆N =
1
π

∑

p=e,o

{[
δp(Ef ) − δp(µ) + δp(−E′

f ) − δp(−µ)
]

− εp
π

2
[
sin2 δp(µ) − sin2 δp(−µ)

] }
, (4)

where εp = 1(−1) for even parity (odd parity). Section 3
is used to discussed the change in energy of a relativistic
spin-1/2 system in the presence of an impurity. In Sec-
tion 4, the relation between the FSR and the 1D relativis-
tic Levinson theorem is presented. Density oscillations are
discussed. The FSR for the massless relativistic spin-1/2
particles is also presented here. Our conclusions are sum-
marized in Section 5.

2 Friedel theorem for relativistic spin-1/2
systems in one dimension

We consider the 1D model. The Dirac equation of a spin-
1/2 particle with effective mass µ moving in a symmetric
potential V (x) specified in the above is

[
αp̂ + γ0µ + V (x)

]
Ψλp(x) = EλΨλp(x), (5)

where p̂ = −i∂x, and α = γ0γ1 is Dirac matrix. In one
dimension, they are chosen as the Pauli matrices γ0 = σ3,
γ1 = iσ1. The explicit form of two-component spinor
Ψλp(x) is expressed as

Ψλp(x) =
(

fλp(x)
gλp(x)

)
. (6)

Here the second subscript p indicates the parity of the
spinor. With this, Dirac equation is written as a system
of first-order differential equations for fλp(x) and gλp(x)

d

dx
fλp + [Eλ + µ − V (x)] gλp = 0, (7)

and
d

dx
gλp − [Eλ − µ − V (x)] fλp = 0. (8)

Since V (x) is even function of x, one can show
that (fλp(−x),−gλp(−x))T is also a solution of (5) if
(fλp(x), gλp(x))T is its solution, where the superscript T
denotes matrix transposition. Therefore the components
of the even-parity solution

Ψλe(x) =
(

fλe(x)
gλe(x)

)
(9)

at region x < 0 have the reflections

fλe(x) = fλe(−x), gλe(x) = −gλe(−x). (10)

Similarly, the components of odd-parity solution at region
x < 0 have the reflections

fλo(x) = −fλo(−x), gλo(x) = gλo(−x). (11)

These equalities provides a convenient method to obtain
solutions at x < 0 for a definite parity. The differential
equations at regions of V (x) = 0 can be decoupled into

d2

dx2
fλp + k2fλp = 0, (12)

and
d2

dx2
gλp + k2gλp = 0 (13)

with k =
√

E2
λ − µ2 ≥ 0. Thus the asymptotic solutions

of scattering state of f for positive-energy (Eλ > µ) are

fλe(x)
|x|→∞−→

√
Eλ + µ

2πk
cos (k |x| + δe) , (14)

fλo(x)
|x|→∞−→ εx

√
Eλ + µ

2πk
sin (k |x| + δo) , (15)

where εx = 1(−1) for positive (negative) x, δe (δo) is
the phase shift of even-(odd-)parity solution, and the nor-
malization constant

√
(Eλ + µ)/2πk is determined by the

normalization condition of δ(Eλ − Eλ′) for free particles.
Substituting (14) and (15) into (7), one obtains for Eλ > µ

gλe(x)
|x|→∞−→ εx

√
Eλ − µ

2πk
sin (k |x| + δe) , (16)

gλo(x)
|x|→∞−→ −

√
Eλ − µ

2πk
cos (k |x| + δo) . (17)

Similar procedures give the entire asymptotic solutions

fλe(x)
|x|→∞−→

√
|Eλ| ± µ

2πk
cos (k |x| + δe) , (18)

fλo(x)
|x|→∞−→ εx

√
|Eλ| ± µ

2πk
sin (k |x| + δo) , (19)

and

gλe(x)
|x|→∞−→ ±εx

√
|Eλ| ∓ µ

2πk
sin (k |x| + δe) , (20)

gλo(x)
|x|→∞−→ ∓

√
|Eλ| ∓ µ

2πk
cos (k |x| + δo) . (21)

Here the upper (lower) sign denotes the solutions of the
positive-energy (negative-energy) branch Eλ ≥ µ (Eλ ≤
−µ). These asymptotic solutions will be used to evaluate
the change of the number of states around the potential
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V (x). For our purposes it is very convenient to write the
spin wave function in a form

Ψλ(x) =
∑

p=e,o

cpΨλp(x) =
∑

p=e,o

cp

(
fλp(x)
gλp(x)

)
(22)

which include solutions of different parities and is the gen-
eral solution of the Dirac equation (5). Here cp’s are coef-
ficients dependent on the particular form required for Ψλ.
Now we consider a large distance |R|, centred on the ori-
gin. By multiplying equation (5) through by Ψ†

λ(x) and
the corresponding equation for Ψ†

λ(x) by Ψλ(x), it follows
after subtraction of the two equations

(Eλ′ − Eλ)Ψ†
λ(x)Ψλ′ (x) = −i∂x

{
Ψ†

λ(x)αΨλ′ (x)
}

. (23)

Integrating over the whole x-axis, and using the diver-
gence theorem, we find

∫ R

−R

dxΨ†
λ(x)Ψλ′(x) =
1

(Eλ′ − Eλ)

∑

p=e,o

[
f∗

λp(x)gλ′p(x) − g∗λp(x)fλ′p(x)
]R

−R
,

(24)

where one take cp = 1, for since we are only interested in
the difference of states its complex nature is of no interest.
For free Dirac particles, the integral can be expanded as

∫ R

−R

dxΨ(0)†
λ (x)Ψ(0)

λ′ (x) =

1
(Eλ′ − Eλ)

∑

p=e,o

[
f

(0)∗
λp (x)g(0)

λ′p(x) − g
(0)∗
λp (x)f (0)

λ′p(x)
]R

−R

(25)

with f
(0)
λp = fλp(δp = 0), and g

(0)
λp = gλp(δp = 0). In

solids, the electron (hole) states are occupied up to the
Fermi energy Ef (−E′

f ). So the total change of the number
of states ∆N around the potential V (x) is obtained by
integrating up to the Fermi energy Ef (−E′

f )

∆N = lim
R→∞

lim
Eλ′→Eλ

(∫ −µ

−E′
f

+
∫ Ef

µ

)
dEλ

×
∫ R

−R

dx
[
Ψ†

λ(x)Ψλ′ (x) − Ψ(0)†
λ (x)Ψ(0)

λ′ (x)
]
, (26)

where the lower bound of the Fermi surface for negative-
energy is denoted by −E′

f for accounting of different levels
generally. Since at large distances the wave function Ψλ(x)
must be unchanged except for the phase shifts in different
parities, the wave functions f and g in (22) can be replaced
by the asymptotic representations of (18–21). It follows

that

∫ R

−R

dx
[
Ψ†

λ(x)Ψλ′ (x) − Ψ(0)†
λ (x)Ψ(0)

λ′ (x)
]

=

1
(Eλ′ − Eλ)

∑

p=e,o

{
[
f∗

λp(x)gλ′p(x) − g∗λp(x)fλ′p(x)
]R

−R

−
[
f

(0)∗
λp (x)g(0)

λ′p(x) − g
(0)∗
λp (x)f (0)

λ′p(x)
]R

−R

}

=
−εEC

(Eλ′ − Eλ)

∑

p=e,o

2 cos
[
(k − k′)R +

1
2
(δp − δp′)

]

× sin
[
1
2
(δp − δp′)

]

+
D

(Eλ′ − Eλ)

∑

p=e,o

εp

{
−2 sin [(k + k′)R] sin2

[
1
2
(δp + δp′)

]

+ cos [(k + k′)R] sin(δp + δp′)

}
, (27)

where

C =
1

2π
√

kk′

{
[(|Eλ| + µ)(|Eλ′ | − µ)]1/2

+ [(|Eλ| − µ)(|Eλ′ | + µ)]1/2
}

, (28)

D =
1

2π
√

kk′

{
[(|Eλ| + µ)(|Eλ′ | − µ)]1/2

− [(|Eλ| − µ)(|Eλ′ | + µ)]1/2
}

(29)

with εE ≡ 1(−1) for Eλ ≥ µ (Eλ ≤ −µ). Taking the limit
Eλ′ → Eλ, equations (28) and (29) yield C → 1/π and
D/(Eλ′ − Eλ) → εE(µ/2πk2) such that

lim
Eλ′→Eλ

−εEC

(Eλ′ − Eλ)
2 cos

[
(k − k′)R +

1
2
(δp − δp′)

]

× sin
[
1
2
(δp − δp′)

]
−→ εE

π

dδp

dEλ
(30)

and

lim
Eλ′→Eλ

εpD

(Eλ′ − Eλ)

{
−2 sin [(k + k′)R] sin2

[
1
2
(δp + δp′)

]

+ cos [(k + k′)R] sin(δp + δp′)

}

−→ εEεp
µ

2πk2

[−2 sin(2kR) sin2 δp + cos(2kR) sin(2δp)
]
.

(31)

Since δp(k = 0)/π always take integers or half integers
in 1D space [20], EλdEλ = kdk, and limR→∞ cos(2kR)
oscillates, the integration of the second term in (31)
limR→∞

∫
dEλ [cos(2kR) sin 2δp] /k2 → 0. Moreover, due
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to limR→∞ sin(2kR)/πk = δ(k), the integration of the first
term in (31)

lim
R→∞

(∫ −µ

−E′
f

+
∫ Ef

µ

)
dEλ

−εEεpµ sin(2kR) sin2 δp

πk2
=

(∫ −µ

−E′
f

+
∫ Ef

µ

)
dEλεEεpµ

−δ(k) sin2 δp

k

= − εp

2
[
sin2 δp(µ) − sin2 δp(−µ)

]
. (32)

Thus the difference of the number of states is found to be

∆N =
1
π

∑

p=e,o

{ [
δp(Ef ) − δp(µ) + δp(−E′

f ) − δp(−µ)
]

− εp
π

2
[
sin2 δp(µ) − sin2 δp(−µ)

] }
. (33)

The sine functions at the zero-momentum is important
and used to count the marginal (half) bound states with
the phase shift π/2 at Eλ = ±µ [20,22]. Comparing with
the nonrelativistic FT (3), we see that the negative-energy
branch turns out to be significant. Positive (negative) ion
will attract (repulse) electrons (holes), and repulse (at-
tract) holes such that the variance of states is together
the effect of two kinds of particles.

3 The change in energy due to an impurity
in relativistic 1D systems

We discuss the change in energy in the presence of an
impurity here. By equations (18–21), one see that the wave
functions undergo phase shifts. This fact entails a change
of the kinetic energy of particles. To quantify the change,
we first consider the solutions of even parity and notice
that the reasonable requirement Ψ(0)

λe (x)
∣∣∣
B.C.

= 0 for a
Dirichlet boundary condition in an 1D system gives

k |L| =
(2n + 1)π

2
, n = 0, 1, 2, · · · (34)

for function f
(0)
λe , and

k |L| = nπ, n = 1, 2, · · · (35)

for function g
(0)
λe . Here |L| is used to denote the boundary

of 1D system. The number dn of allowed states between k
and k+dk is given by differentiating both members of (34)
and (35) which yield |L|dk = πdn. Thus the unperturbed
density of states for even parity reads

D(k) =
dn

dk
=

|L|
π

. (36)

On the other hand, the boundary condition for perturbed
wave functions vanish at x = |L| yield

k |L| + δe(k) =
(2n + 1)π

2
, n = 0, 1, 2, · · · (37)

for function fλe, and

k |L| + δe(k) = nπ, n = 1, 2, · · · (38)

for function gλe. From equations (34), (37) and (35), (38),
we find that the change ∆k of the wave number of an even-
parity spin-1/2 particle (antiparticle) is ∆k |L| = −δe(k)
(δe(k)) and the change in energy are

∆E|e− =
k∆k

Eλ
=

−k δe(k)|e−

|L|
√

k2 + µ2
(39)

and

∆E|e+ =
k∆k

Eλ
=

k δe(k)|e+

|L|
√

k2 + µ2
, (40)

where we used e− (e+) to denote the particle (antiparti-
cle). Similarly, an odd-parity spin-1/2 particle (antiparti-
cle) gives the variation of energy as follows:

∆E|e− =
k∆k

Eλ
=

−k δo(k)|e−

|L|
√

k2 + µ2
(41)

and

∆E|e+ =
k∆k

Eλ
=

k δo(k)|e+

|L|
√

k2 + µ2
. (42)

The total change in energy in the presence of the impurity
in 1D relativistic spin-1/2 systems is then given by

∆E =
∑

p=e,o

(∫ kf

0

∆E|e−
|L|
π

dk −
∫ k′

f

0

∆E|e+

|L|
π

dk

)

= −
∑

p=e,o

( ∫ kf

0

k δp(k)|e−

|L|
√

k2 + µ2

|L|
π

dk

+
∫ k′

f

0

k δp(k)|e+

|L|
√

k2 + µ2

|L|
π

dk

)
, (43)

where |L| /π is the density of states of particles and an-
tiparticles. This result is an 1D relativistic generalization
of Fumi theorem [23] where the change of the kinetic en-
ergy due to the impurity for non-relativistic systems was
studied. It is worthy to note that in the massless limit, the
change in energy becomes a more compact representation

∆E = − 1
π

∑

p=e,o

(∫ kf

0

δp(k)|e− dk +
∫ k′

f

0

δp(k)|e+ dk

)
,

(44)
which states the variance of system energy due to the im-
purity can be completely ascertained as soon as the phase
shifts is decided.

4 Discussions

4.1 The relation with the relativistic Levinson theorem

In 1949, Levinson established a theorem in non-relativistic
quantum mechanics [21]. Well-known as the Levinson the-
orem, it clarifies the relation between the phase shifts of
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a quantum particle scattered by a short range potential
and the number of bound states therein. In 3D systems,
the theorem can be described as

δl(0) = nlπ, l = 0, 1, 2, · · · (45)

where δl(0) denotes the phase shift of scattered state with
a momentum k at the threshold (k = 0) in the angular
momentum channel l, and nl is the total number of bound
states in the angular momentum channel l allowed by the
short range potential. When the angular momentum l = 0,
the theorem must be modified to

δ0(0) = (n0 + 1/2)π, (46)

due to the existence of a zero-energy resonance (a half-
bound state) [22]. The theorem is one of the most inter-
esting and beautiful results in non-relativistic quantum
theory. The subject was then studied and generalized by
many authors (e.g. [22] and reference therein). In [20],
the 1D Levinson theorem is generalized to Dirac particles
moving in a cutoff potential V (x) = 0 for x ≥ a, and
obtain relation between the number of bound states with
even (odd) parity, ne (no), and the phase shifts δe(±Eλ)
[δo(±Eλ)] of scattering states with the same parity at zero-
momentum as follows:

[δe(µ) + δe(−µ)] +
π

2
[
sin2 δe(µ) − sin2 δe(−µ)

]
= neπ,

(47)
and

[δo(µ) + δo(−µ)] − π

2
[
sin2 δo(µ) − sin2 δo(−µ)

]
= noπ.

(48)
Since the potential is set up in the free space, the phase
shifts at the upper and lower bounds of energy can be ruled
out by a relation δp(∞) + δp(−∞) = 0 (p = e, o). How-
ever, in the 1D fermionic many body systems, the equality
does not hold due to restrictions of Fermi surfaces. The
Levinson theorem must be modified by

[
δe(µ) − δe(Ef ) − δe(−E′

f ) + δe(−µ)
]

+
π

2
[
sin2 δe(µ) − sin2 δe(−µ)

]
= neπ, (49)

and

[
δo(µ) − δo(Ef ) − δo(−E′

f ) + δo(−µ)
]

− π

2
[
sin2 δo(µ) − sin2 δo(−µ)

]
= noπ. (50)

Comparing (33) with these two equalities, one find the
relation between the difference of scattering states and
the Levinson theorem of the specified potential

∆N +
∑

p=e,o

np = 0. (51)

The relation reflects the completeness of the whole set of
states. The total number of states is not altered by an ex-
ternal field, except that some scattering states are pulled

down into the bound state region if the external potential
is attractive. On the other hand, equation (51) expresses
that there is an upper bound on ∆N which depends on
the potential V (x). A finite deep potential may have finite
bound states such that the change of the number of states
is finite. The necessary and sufficient condition to be sat-
isfied by the potential in the relativistic Levinson theorem
is still an open problem.

4.2 Density oscillation in one dimensional relativistic
systems

There is another way to express the change of the number
of states, which enables us to indicate the variance of the
density of states. It may be expressed as

∆N =
∫ ∞

−∞
dx [ρ(x) − ρ0(x)] , (52)

where (ρ − ρ0) ≡ δρ is the difference of the density of
states given as

δρ =
∫

k<kf

dk

2π

[
|Ψλ(x)|2 −

∣∣∣Ψ(0)
λ (x)

∣∣∣
2
]

. (53)

At large distances, with equations (18–21), it is found
to be

δρ =
1
2π

∑

p=e,o

∫

k<kf

dk
[
−εpεE

µ

πk
sin(2kx + δp) sin δp

]
.

(54)
The wave vector integral is difficult because the phase
shifts depend on k. But we can obtain an approximate
answer by expending it around the Fermi wave vector as
δp = δp(kf ) + (k − kf )(dδp/dk), which yields

lim
|x|→∞

δρ = − 1
2π

∑

p=e,o

εpεE
µ

π
Si(2kfx) sin δp(kf ). (55)

Here Si(z) =
∫ z

0
(sin t/t)dt is sine integral [24] which is a

regular oscillatory function but gradually decays to zero
as |x| → ∞. The Fermi wave number kf must be replaced
by k′

f (corresponding to −E′
f ) when the negative-energy

branch is written out. By comparing with the 2D and
3D systems, where the density oscillates with a period
of 2kf and decreases in amplitude as r−2 (2D) and r−3

(3D), here it tends to zero only as 1/x, thus it is a more
significant effect, and the power is consistent with that
in [18]. Another remarkable result is that two branches of
energy have the opposite oscillating phases. The negative-
energy branch will tend to suppress the oscillation for the
same phase shifts.

4.3 The 1D FSR for massless Dirac fermions

Since the Lorentz group often occurs as an approximate
symmetry for low energy excitation for 1D fermions in
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metals and antiferromagnets [19], relativistic spectra ap-
pear naturally for massless conduction electrons in such
systems. It is interesting to discuss the FSR in the condi-
tion of the fermion mass tends to zero. From (33), one see
that as the effective mass tends to zero, the contribution
of the final term to ∆N at zero-momentum vanishes, and
∆N becomes

∆N =
1
π

∑

p=e,o

[
δp(Ef ) + δp(−E′

f ) − 2δp(0)
]
, (56)

which indicates the phase shifts of particle and anti-
particle at zero-momentum merge to become twice. An-
other interesting result about massless fermions comes
from (54). As the effective mass tends to zero the dif-
ference of the density of states at far regions turns into
a constant, and independent of the details of the system.
This argument probably enables us to decide the magni-
tude of effective mass in a non-ideal effective relativistic
1D system via Friedel oscillation at far zones.

4.4 Extension the potential to more general case

Although in the procedure of our proof we assume the po-
tential must be short range, we do not specify the radius
a beyond which V (x) = 0. Hence we expect that the FT
given in the article should be valid for a very general po-
tential as long as the potential decrease rapidly enough
when |x| → ∞.

4.5 The control of the change of the total number
of states

Since a specified number of bound states in quantum dot
can be realized in the modern microelectronic technique,
it seems to us that we can control the number of states
around an impurity. The reason is that today quantum
dots can be carved out of a 1D electron gas such that
the change of the number of states around them can be
counted according to (51). This may be useful in control-
ling spin bus (a controllable coupler of many qubits) via
nonlocal spin interaction [25].

5 Conclusions

In this paper, the 1D Friedel sum rule is generalized to the
relativistic spin-1/2 systems. The change in energy of the
spin-1/2 system in the presence of an impurity is studied.
The relation of the rule with the 1D relativistic Levinson
theorem is presented. Density oscillations of relativistic
spin-1/2 systems are discussed. Since in 1D metals the
low energy effective theory for conduction electrons is de-
scribed by the Dirac’s relativistic theory [19] we hope the
result is useful in studying the properties of 1D nanostru-
tures.

Appendix

Here we prove the Friedel sum rule for non-relativistic par-
ticles in 1D systems. Consider the 1D Schrödinger equa-
tion

∂2

∂x2
ϕ(x) +

[
k2 − 2mV (x)

]
ϕ(x) = 0 (57)

with k =
√

2mE ≥ 0. For a symmetric potential V (x) =
V (−x) when |x| ≤ a and V (x) = 0 when |x| ≥ a, two
linearly independent scattering solutions ϕ1(x) and ϕ2(x)
are given by

ϕ1(x) =
{

T (k)eikx, x ≥ a
eikx + R(k)e−ikx, x ≤ −a

(58)

and

ϕ2(x) =
{

e−ikx + R(k)eikx, x ≥ a
T (k)e−ikx, x ≤ −a

, (59)

where ϕ1(x) and ϕ2(x) represent the incident direction is
from left and right, and R(k) and T (k) denote the trans-
mission and reflection coefficients. For our purposes, the
solutions of definite parities can be obtained by linear com-
binations of equations (58) and (59), which yield

ϕe(x) =
{

(1/
√

π)eiδe cos(kx + δe), x ≥ a
(1/

√
π)eiδe cos(kx − δe), x ≤ −a

(60)

and

ϕo(x) =
{

(i/
√

π)eiδo sin(kx + δo), x ≥ a
(i/

√
π)eiδo sin(kx − δo), x ≤ −a

. (61)

Here the phase shifts are defined as

e2iδe,o ≡ T ± R, (62)

and the normalization constants are chosen as the wave
functions for the free particle, i.e. the case δe = 0 = δo,
are normalized to (1/2)[δ(x − x′) ± δ(x + x′)]. The total
change of the number of states ∆N around the potential
V (x) is obtained by integrating from −L to L and up to
the Fermi surface kf

∆N = lim
L→∞

∑

p=e,o

∫ kf

0

dk

∫ L

−L

dx

[
|ϕp(x)|2 −

∣∣∣ϕ(0)
p (x)

∣∣∣
2
]

,

(63)
where ϕ

(0)
p (x) denotes the state of a free particle with a

definite parity. The integral on x can be evaluated by the
following procedures. By multiplying (57) through by ϕ∗

p
and the corresponding equation for ϕ∗

p by ϕp, it follows
that

∂

∂x

[
ϕ∗

p(k
′, x)

∂

∂x
ϕp(k, x) − ϕp(k, x)

∂

∂x
ϕ∗

p(k
′, x)

]
=

(
k′2 − k2

)
ϕ∗

p(k
′, x)ϕp(k, x), (64)

where the dependence of ϕp on the variables k, x is ex-
pressed explicitly. By taking the limit k′ → k, it can be
shown that

|ϕp(x)|2 =
1
2k

∂

∂x

[
∂ϕp

∂x

∂ϕ∗
p

∂k
− ϕp

∂2ϕ∗
p

∂x∂k

]
. (65)
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Thus, for large L, using equations (60) and (61), one find

∑

p=e,o

∫ L

−L

dx

[
|ϕp(x)|2 −

∣∣∣ϕ(0)
p (x)

∣∣∣
2
]

=

1
π

∑

p=e,o

{
dδp

dk
+ εp

1
2k

[sin (2kL + 2δp) − sin(2kL)]
}

=
1
π

∑

p=e,o

{
dδp

dk
− εpπ sin2 δp

sin(2kL)
πk

+ εp
1
2k

sin(2δp) cos(2kL)

}
. (66)

Since limL→∞ sin(2kL)/πk = δ(k) and limL→∞ cos(2kL)
oscillates, the integration over k in (63) can be carried out,
which yields the 1D Friedel sum rule

∆N =
2
π

∑

p=e,o

[
δp(Ef ) − δp(0) − εp

π

2
sin2 δp(0)

]
, (67)

where the factor of 2 is spin degeneracy and we have used
the fact δp(0)/π always take half-integers [22] such that
the integration in the final term in (66)

lim
L→∞

∫ kf

0

dk
1
k

sin(2δp) cos(2kL) −→ 0. (68)

As usual, sin2 δp(0) accounts for the half bound state
which has the phase shift π/2 at the critical energy E = 0.
The interesting relation between the number of bound
states and the change in the scattering states ∆N can
be established by the completeness relationship

∑

p=e,o

Np∑

i=1

Ψ∗
p,Ei

(x)Ψp,Ei(x
′)

+
∑

p=e,o

∫ kf

0

dkϕ∗
p(k, x)ϕp(k, x′) = δ(x − x′). (69)

Here Np and Ψp,Ei(x) are the bound-state number and
eigenfunction with a definite parity. Subtracting the re-
lation from the free particles solutions ϕ

(0)
p (k, x), setting

x = x′ and integrating from −L to L, we obtains the
equality

N = Ne + No = −∆N (70)

which implies the number of the bound states

N =
2
π

∑

p=e,o

[
δp(0) − δp(Ef ) + εp

π

2
sin2 δp(0)

]
. (71)

This is the Levinson theorem for non-relativistic particles
in 1D systems. Different from the single particle case [26],
the phase shifts at Fermi energy play an important role.
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